
Proceedings of the 1990 Winter Simulation Conference
Osm_m Balci, Randall P. Sadowski, Richard E. Nanc¢ (eds.)

N91-25956

EFFECTS OF DISTRIBUTED DATABASE MODELING ON EVALUATION OF
TRANSACTION ROLLBACKS

Ravi Mukkamala

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529-0162.

ABSTRACT

Data distribution,degreeofdata replication,and transaction
accesspatternsare key factorsin determiningthe performance
of distributed database systems. In order to simplify the evalua-
tion of performance measures, database designers and researchers
tend to make simplistic assumptions about the system. In this
paper, we investigate the effect of modeling assumptions on the
evaluation of one such measure, the number of transaction roll-
backs, in a partitioned distributed database system. We develop
six probabilistic models and develop expressions for the number
of rollbacks under each of these models. Essentially, the models
differ in terms of the available system information. The analyti-
cal. results so obtained are compared to results from simulation.
From here, we conclude that most of the probabilistic models
yield overly conservative estimates of the number of rollbacks.
The effect of transaction commutativity on system throughput is
also grossly undermined when such models are employed.

1. INTRODUCTION

A distributed database system is a collection of cooperating
nodes each containing a set of data items (In this paper, the
basic unit of access in a database is referred to as a data item.).
A user transaction can enter such a system at any of these nodes.
The receiving node, sometimes referred to as the coordinating or
initiating node, undertakes the task of locating the nodes that
contain the data items required by a transaction.

A partitioning of a distributed database (DDB) occurs when
the nodes in the network split into groups of communicating
nodes due to node or communication link failures. The nodes

in each group can communicate with each other, but no node in
one group is able to communicate with nodes in other groups. We
refer to each suchgroup as a partition. The algorithms which al-
low a partitioned DDB to continue functioning generally fall into
one of two classes [Davidson et al. 1985]. Those in the first class
take a pessimistic approach and process only those transactions
in a partition which do not conflict with transactions in other par-
titions, assuring mutual consistency of data when partitions are
reunited. The algorithms in the second class allow every group
of nodes in a partitioned DDB to perform new updates. Since
this may result in independent updates to items in different par-
titions, conflicts among transactions are bound to occur, and the
databases of the partitions will clearly diverge. Therefore, they

require a strategy for conflict detection and resolution. Usually,
rollbackl are used as a means for preserving consistency; con-
flicting transactions are roiled back when partitio,s are reunited.
Since coordinating the undoing of transactions is a very dif_cult
task, these methods are called optimistic si.ce they are useful
primarily in a situation where the number of items in a par-
ticular database is large and the probability of conflicts among
transactions is small.

In general, determining if a transaction that soccessfully ex-
ecuted in a partition is rolled back at the time the database
is merged depends on a number of factors. Data items in the
read-set and the write-set of the transaction, the distribution of
these data items among the other partitions, access patterns of
transactions in other partitions, data depmulencies among the
transactions, and semantic relation (if a,v) between these trans-
actions are some examples of these facto_.s. Exact evaluation of

rollback probability for all transactions in a database (and hence
the evaluation of the number of rolled hack transactions) gen-
erally involves both analysis and simulation, and requires large
execution times [Davidson 19821 Davidson 198,| 1. To overcome
the computational complexities of eval,atio,, designers and re-
searchers generally resort to approximatiml techniques [David-
son 1982; Davidson 19861 Wright 1983a; Wright 198361. These
techniques reduce the computatiorl time by making simplifying
assumptions to represent the underlying distrihuted system. The
time complexity of the resulting techniques greatly depends on
the assumed model as well as evaluation I_'chlliqm,s.

in this paper we are interested in dt.tcrmitfi,g the effect of the
distributed database models on the comptltatlonal complexity
and accuracy of the rollback statistics in a partit ionecl database.

The balance of this paper is outli.ed as follows. Section 2 for-
really defines the problem under consideralion. In Section 3, we
discuss the data distribution, replicatim_, and tra.saction model-
ing. Section 4 derives the rollback st,listics for one distribution
model. In Section 5, we compa,'e the analy._is methods for six

models and simulation method for one model based on computa-
tional complexity, space complexity, and accuracy of the measure.
Finally, in Section 6, we summarize the obtained results.

2. PROBLEM DESCRIPTION

Even though a transaction 7'1 ia partitlml /_t may be rolled
back (at merging time) by amJthcr tr;ll_sa('tit,t 7_ in partition I_
due to a number of reasons, the followfi,_. Iwo cases are found to
be the major contributors [Davidson 1982].

i. PI _- P2, and there is at least one data item which is up-
dated by both Ti and T_. This is referred to as a unite-write
conflict.

ii. PI = P2, T2 is rolled back, and it is a dependency parent of
Tt (i.e., Ti has read at least one data item updated by 7"2,
and T2 occurs prior to Tt in the serialization sequence).

The above discussion on reasons for rollback only considers
the syntax of transactions (i.e. read- and write-sets) and does
not recognize any semantic relation between them. To be more
specific, let us consider transactions Tt and T; executed in two
different partitions Pl and P_ respectively. Let us also assume
that the intersection between the write.sets of 7', and Tz is non-
empty. Clearly, by tl_e above definition, there is a write-write
conflict and one of the two transactions has to be rolled back.

However, if T_ and 7'2 commute with each other, then there is no
need to rollback either of the transactions at the time of partition
merge IGarcia-Molina 19831 Jajodia and Speckman 1985; Jajodia
and Mukkamala 1990]. Instead, TI needs to be executed in P3
and T2 needs to be executed in PI- The analysis in this paper
take this property into account.

In order to compute the number of rollbacks, it is also nec-
essary to define some ordering (O(P)) on the partitions. For
example, if TI and Tz correspond to case {i) above, and do not
commute, it is necessary to determine which of these two are
rolled back at the time of merging. Partition ordering resolves
this ambiguity by the following rule: Whenever two conflicting
but non-commoting tra,sactions are executed in two different
partitions, then the transaction executed in the lower order par-
tition is rolled back.

9 PRECF..D;:%G ?,',.,E Bi_A_K i'_GI t--__it_ED

R. Mukkamala

Since a transaction may be rolled back due to either (i) or
(ii), we classify the rollbacks into two classes: Class 1 and Class
2 respectively. The problem of estimating the number of roll-
backs at the time of partition mcrging in a partially replicated
distributed database system may be formulated as follows.

Given the following parameters, determine the number of
rolled back transactions in class I (RI) and class 2 (R_).

• n, the number of nodes in the database;

• d, the number of data items in the database;

• p, the number of partitions in the distributed system (prior
to merge);

• t, the number of transaction types;

• GD, the global data directory that contains the location of
each of the d data items; the GD matrix has d rows and n
columns, each of which is either 0 or I;

• NSh, the set of nodes in partition k, ¥k = 1,2,... ,p;

• R..,cj, the read-set of transaction type j, j -- 1,2,..., t;

• W.S'j, the write-set of transaction type j, j = 1,2,... ,t;

• N_k, the nvmber of transactions of type j received in par-

tition k (prior to merge), j = 1,2 ,t, k = 1,2 ,p.

• C'M, the commutativity matrix that defines transaction
commutativity. If CM.,n -- true then transaction types jl
and j2 commute. Otherwise they do not commute.

The average number of total roilbacks is now expressed as R =
R_ + R2.

3. MODEL DESCRIPTION

As stated in tile introduction, line primary objective of this
paper isto investigate the effect of data distribution, replication,
and transaction models on estimation of tile number of rollbacks
in a distributed database syste|u.

To describe a data distribution-transaction model, we char-
acterize it with three orthogonal parameters:

1. Degree of data item replication (or the number of copies).

2. Distribution of data item copies.

3. Transaction characterization

We now discuss each of these parameters in detail.
For simplicity, several analysis techniques assume that each

data item has the same number of copies (or degree of replica-
tion) in the database system [Coffman et al. 1981]. Some other
techniques characterize the degree of replication of a database by
the average degree of replication of data items in that database

[Davidson 1!}86]. Others treat the degree of replication of each
data item independently.

Some designers and analysts assume some specific allocation
schemes for data item (or group) copies (e.g., [Mukkg. mala 1987_]):
Assuming complete knowledge of data copy distribution (GD/))
is one such assumption. Depending on the type of allocation,
such assumptions may simplify the performance analysis. Others
assume that each data item copy is randomly distributed among
the nodes in the distributed system [Davidson 19861.

Many database analysts characterize a transaction by the size
of its read-set and its write-zet. Since different transactions may
have different sizes, these are either classified based on the sizes,
or an average read-set size and average write-set size are used to
represent a transaction. Others, however, classify transactions
based on the data items that they access (and not n_arily on
their size). In this case, transaction types are identified with their
expected sizes and the group of data items from which these are
accessed. An extreme example is a case where each transaction in

the system is identified completely by its read-set and its write-

set.
With these three parameters, we can describe a number of

models. Due to the limited space, we chose to present, the results
for six of the_e models in this paper.

Vqe chose the following six models based on their applicability
in the current literature, and their close resemblance to practical
systems. In aH these models, the rate of arrival of transactions
at each of the nodes is assumed to be completely known a priori.
We also assume complete knowledge of the partitions (i.e. which
nodes are in which partitions) in all the models.

Model 1: Among the six chosen models, this has the max-
imum information about data distribution, replication, and
transactions in the system. It captures the following infor-
mation.

• Replicalion: Data replication is specified for each data
item.

• Data distribution: The distribution of data items among
the nodes in the system is represented as a distribution
matrix (as described in Section 2).

• Transactions: All distinct transactions executed in a

system are represented by their read-sets and write-
sets. Thus, for a given transaction, the model knows
which data items are read, and which data items are

updated. The commutativity information is also com-
pletely known and is expressed as a matrix (as de.
scribed in Section 2).

Model 2: This model reduces the number of transactions

by combining them into a set of transaction types based on
commutativity, commonaiities in data access patterns, etc.
Since the transactions are now grouped, some of the indi-
vidual characteristics of transactions (e.g. the exact read-
set and writes-set) are lost. This model has the following
in for,nation.

• Replication: Average degree of replication is specified
at the system level.

• Data distributwn: Since the read- and write.set infor-

mation is not retained for each transaction type, the
data distribution information is also summarized in

terms of average data items. It is assumed that the
data copies are allocated randomly to the nodes in the
system.

• Transactions: A transaction type is represented by
its read-set size, write-set size, and the number of
data items from which selection for read and write
is made. Since two transaction types might access the
same data item, it also stores this overlap information
for every pair of transaction types. The eommutativ-
ity information is stored for each pair of transaction
types.

Model 3: This model further reduce the transaction types
by grouping them based only on commutativity character-
istics. No consideration is given to commonalities in data
access pattern or differing read-set and write.set sizes. It
has the following information.

• Replication: Average degree of replication is specified
at the system level.

• Data distribution: As in model 2, it is assumed that
the data copies are allocated randomly to the nodes
in the system.

• Transactions: A transaction type is represented by
the average re.ad-zet size and average write-set size.
The commutativity information is stored for all pairs
of transaction types.

Model 4: This model cla.ssiiies transactions into three

types: read-only, read-write, and others. Read-only trans-

84O

EffectsofDistributedDatabase Modeling on Evaluation of Transaction Rollbacks

actions commute among themselves. Read-write transac-
tions neither commute among themselves nor commute with
others. The others class corresponds to update transactions
that may or may not commute with transactions in their
own class. This fact is represented by a commute probabil-
ity assigned to it.

• Replication: Average degree of replication is specifed
at the system level.

• Data distribution: As in model 2, it is assumed that
the data copies are allocated randomly to the nodes
in the system.

• Transactions: Read-only class is represented by aver-
age read-set size. The read-write class is represented
by average read-set and write-set sizes. The others
class is represented by the average read-set size, aver-
age write-set size and the probabdity of commutation.

Model 5: This model reduces the transactions to two

classes: read-only and read-write. Read-only transactions
commute among themselves. The read-wrlte transactions
corresponds to update transactions that may or may not
commute with transactions in their own class. This fact is
represented by a commute probability assigned to it.

• Replication: Average degree of replication is specified
at the system level.

• Data distribution: As in model 2, it is assumed that
the data copies are allocated randomly to the nodes
in the system.

• Transactions: Read-only class is represented by aver-
age read-set size. The read-write class is represented
by average read-set and write-set sizes, and the prob-
ability of commutation.

Model 6: This model identifies read-only transactions and
other update transactions. But these two types have the
same average read-set size. Update transactions may or
may not commute with other update transactions.

• Replication: Average degree of replication is specified
at the system level.

• Data distrt&_tion: As in model 2, it is assumed that
the data copies are allocated randomly to the nodes
izl the system.

• Transactions: The read-set size of a transaction is de-
noted by its average. For update transactions, we also
associate an average write-set size and the probability
of commutation.

Among these, model t is very general, and assumes complete
information of data distribution (GD), replication, and transac-
tions. Other models assume only partial (or average) information
about data distribution and replication. Model 1 has the most
information and model 6 has the least.

4. COMPUTATION OF THE AVERAGES

Several approaches offer potential for computing the average
number of rollbacks for a given system environment; the most
prominent methods are simulation and probabilistic analysis.

Using simulation, one can ._enerate the data distribution ma-
trix (GD) based on the data &stribution and replication policies
of the given model. Similarly, one can generate different trans-
actions (of different types) that can be received at the nodes in
the network. Since the pa,'tition information is completely spec-
ified, by searching the relevant columns of the GD matrix, it is
possible to determine whether a given transaction has been suc-
cessfully executed in a given partition. Once all the successful
transactions have been identified, and their data dependencies
are identified, it is possible to identify the transactions that need
to be rolled back at the time of merging. The generation and
evaluation process may have to be repeated enough number of
times to get the required confidence in the final result.

Probabilistic analysis is especially useful when interest is con-
fined to deriving the average behavior of a system from a given
model. Generally, it requires less computation time. In this pa-
per, we present detailed analysis for model 6, and a summary of
the analysis for models 1-5.

4.1 Derivations for Model 6

This model considers only two transaction types: read-only
(Type 1) and read-write (Type '2). Both have the same average
read-set size of r. A read-write transaction updates w of the data
items that it reads. N_k and N2k represent the rate of arrival of

types I and 2 respectively at partition k. The average degree
of replication of a data item is given as c. The system has n
nodes and d data items. The probability that two read-write
transaction commute is m.

Let us consider an arbitrary transaction Ti received at one
of the nodes in partition k with nk nodes. Since the copies of
a data item are randomly distributed among the n nodes, the
probability that a single data item is accessible in partition k is
given by

o.__, ("-:')

Since each data item is independently allocated, the expected
number of data items available in this partition is dol,. Similarly,
since TI accesses r data items (on the average), the probability
that it will be successfully executed is o_:. From here, the number
of successful transactions in k is estimated as o_Nlk and cr_N2k
for types 1 and respectively.

[n computing the probability of rollback of TI due to case (i),
we are only interested in transactions that update a data item in
the write-set of 7"1 and not commuting with Tt. The probability
that a given data item (updated by Tt } is not updated in another
partition k' by a non-commvting transaction (with respect to TI)
is given by

ilk, = (1- w ,_(l-,n)og,N_,,_--_,/ (2)

Given that a data item is available in k, probability that it is
not available in k' is given as

-- ('-:''')- ('-'"....)
(,,)Ok c

From here, the probability that a data item available in k is not
updated any other transaction in higher order partitions is given
as

6_ = I'I [_(k,/,') + (1 - 7(k,k'))&,] (4)
vk',oIk'}>o{#)

The probability that transaction Tt is not in write-write con-
flict with any other non-commuting transaction of higher-order
partitions is now given as

(s)

From here, the number of transactions rolled back due to category
(i) may be expressed as RI = E_=1(1 - ph)c_N2_

To compute the rollbacks of category (ill, we need to deter-
mine the probability that TI is rolled back due to the rollback of
a dependency parent in the same partition. If T_ is a read-write
transaction in partition k, then the probability that 7"1 depends
on T2 (i.e. read-write conflict) is given by:

841

R.Mukkamata

dal-w)

Ak = 1
(6)

The probability that Ti is i_ot rolled back due to the roll back of
any of its dependency parents is now given by:

,q N.

,=*| o_kN k (7)

where Nk = Nlk + N2k and u = N2*/(Nth + N_).
The total number of rolled back transactions due to category

(iS) is now estimated as R2 = E__l(1 - _)a_,(Nth + #kN2,). The
total number of rolled back transactions is R = Rt + R;.

5. COMPARISON OF THE MODELS

As mentioned in the introduction, the main objective of this
paper is to determine the effect of data distribution, replication,
and transaction models on the estimation of rollbacks. To achieve

this, we evaluate the desired measure using six different data
distribution and replication models. The comparison of these
evaluations is based on computational time, storage requirement,
and the average values obtained.

Due to the limited space, we colJl(l not present the detailed
derivations for the average values for models 2-6. The final ex-
pressions, however, are presented in {Mukkamala 1990].

5.1 Computational Complexity

We now analyze each of the evaluation methods (for models
1-6) for their computational complexity.

• In model 1, all t transactions are completely specified, and
the data distribution matrix is also known. To determine
if a transaction is successfuL, we need to the scan the dis-
tribution matrix. Similarly, determining if a transaction in
a lower order partition is to be rolled back due to a write-
write conflict with a transaction of higher order partition
requires comparison of write-sets of the two transactions.
Determining if a transaction nee(Is to be rolled back due to
the rollback of a dependency parent also requires a search.
All this requires O(ndt + p2t_ + pt2N), where t is the num-
ber of transaction types and N is the maximum number of
transactions executed in a partition prior to the merge.

• Models 2-6 have a similar computation structure. The num-
ber of transaction types (t) is high for model 2 and low for
model 6. Each of these models require O(p_t3c + pt2N)
time. As before, t is the number of transaction types and
N is the maximum number of transactions executed in a

partition prior to the merge.

Thus, model 1 is the most complex (computationally) and model
6 is the least complex.

5.2 Space Complexity

We now discuss the space complexity of the six evaluation
methods:

• Model 1 requires O(dn) to store the data distribution ma-
trix, O(n) to store the partition information, O(dt)to .tore
the data access information, and O(nt) to store the trans-

action arrival information. It also requires Oft _) to store
the commutativity information. Thus, it requires O(dn +

dt + nt + t _) space to store model information.

• Models 4-6 require similar information: Oft) to store the
average size of read- and write- sets of transaction types,
O(nt) for transaction arrival, O(n) for partition informa-
tion, and O(t) for commute information. Thus they require
O(nt) space.

• Model 3, in addition to the space required by models 4-
6, also requires O(t 2) for commutativity matrix. Thus it
requires O(nt + t 2) space.

• Model 2, in addition to the space required by model 3,
also requires t 2 space to store the data overalp information.
Thus, it re(luircs O(nt + t _) storage.

Thus, model 1 has the largest storage requirement and model 6
has the least.

5.3 Evaluation of the Averages

In order to compare the effect of each of these models on
the evaluation of the average rollbacks, we have run a number of
experiments. In addition to the analytical evaluations for models
1-6, we have also run simulations with Model t. The results
from these runs are summarized in Tables 1-7. Basically these
tables describe the number of transactions successfully executed
before partition merge (Before Merge), number of rollbacks due
to class 1 (Rt), rollbacks due to class 2 (R2), and transactions
considered to be successful at the completion of merge (After
Merge). Obviously, the last term is computed from the earlier
three terms. In all these tables, the total number of transaction
arrivals into the system during partitioning is taken to be 65000.
Also, each node is assumed to receive equal share of the incoming
transactions.

• Table 1 summarizes the effect of number of partitions as
measured with Models 1-6. Here, it is assumed that each

of the data items in the system has exactly c = 3 copies.
The other assumptions in models 1-6 are as follows:

1. Model 1 considers 130 transaction types in the sys-
tem. Each is described by its read- and write-sets and
whether itcommutes with the othertransactions.90
of the 130 are read-onlytransactions.The restof the
40 are read-write.Among the read-write,15 commute
witheach other,another I0 commute witheachother,
and the restofthe 15do not commute at all.The sim-
ulationrun takesthe same inputs but evaluatesthe
averagesby simulation.

2. Model 2 maps the 130 transactiontypesinto4 classes.
To make thecomparisonssimple,the abovefourclasses
(90+15+I0+15) are taken as four types. The data

overlapiscomputed from the informationprovidedin
model I.

3. Model 3, to facilitatecomparison of results,considers
the above 4 classes.This model, however, does not
capture the data overlapinformation.

4. Model 4 considersthree types:read-only,read-write
thatcommute among themselveswith some probabil-
ity,and read-writethatdo not commute at all.

5. Model 5 considersread-onlytransactionswithread-zet
sizeof3 and read-writetransactionswith read-setsize
of 6. Read-writetransactionscommute with a given
probability.

6. Model 6 onlyconsiderstheaverageread-setsize(com-
puted as 4 inour case),the portionofread-writetrans-
actions(=45/130), and the average write-setsizefor
a read-write(--2). Probabilitythatany two transac-
tionscommute istaken to be 0.4.

From Table 1 itmay be observed that:

• The analyticalresultsfrom analysisof Model I isa
closeapproximationof the onesfrom simulation.

• The evaluationof number of successfultransactions
priorto the merge is well approximated by Ml the
models. Model 6 deviatedthe most.

• The differencein estimationsof R_ and R2 issignif-
icantacross the models. Model t is closestto the

842

Effects of Distributed Database Modeling on Evaluation of Transaction Rollbacks

simulation. Model 6 has the worst accuracy. Model
5, surprisingly, is somewhat better than Models 2,3,4,
and 6.

• The estimation of R; from models 2-6 is about 50
times of the estimation from Model 1. The estima-
tions from Model 1 and the simulation are quite close.
From here, we can see that, Models 2-6 yield overly
conservative estimates of the number of rollbacks at
the time of partition merge. While Model 1 estimated
the rollbacks as 1200, Model 2-6 have approximated
them as about 13000.

• This difference in estimations seems to exist even when
the number of partitions is increased.

• Table 2 summarizes the effect of number of copies on the
evaluation accuracies of the models. It may be observed
that

• The difference between evaluations from Model 1 and

the others is significant at low (c = 3) as well as high
(c = 8) values of c. Clearly, the difference is more
significant at high degrees of replication.

• The case pl = 4, p_ = 6, c -- 8 corresponds to a case
where each of the 500 data items is available in both
the partitions. This is also evident from the fact that
all the 65000 input transactions are successful prior to
the merge.

• The results from the analysis and simulation of Model
1 are close to those from simulation.

• Table 3 shows the effect of increasing the number of nodes
from 10 (in Table 1) to 20. For large values of n, all the six
models result in good approximations of successful trans-
actions prior to merge. The differences in estimations of RI
and R_ still persist.

• Table 4 compares models 5 and 6. While model 6 only re-
tains average read.set size information for any transaction,
model 6 keeps this information for read-only and read-write
transactions separately. This additional information en-
abled model 5 to arrive at better approximations for R1
and R2. In addition, the effect of commutativity on Rj and
R_ is not evident until m >_ 0.99. This is counterintuitive.
The simplistic nature of the models is the real cause of this
observation. Thus, even though these models have resulted
in conservative estimates of RL and R2, we can't draw any
positive conclusions about the effect of commutativity on
the system throughput.

• The comments that were made about the conservative na-
ture of the estimates from models 5 and 6 also applies to
model 2. These results are summarized in Table 5. Even
though this model has much more system information than
models 5 and 6, the results (RI and R2) are not very differ-
ent. However, the effect of commutativity can now be seen
at m > 0.95.

• Having observed thatthe effectof comrnutativityisalmost
lostforsmallervaluesof m inmodels 2-6,we willnow look

at itseffectwith model I. These resultsare summarized
in Table 6. Even at small valuesof m, the effectof com-
mutativityon the throughput isevident. In addition,it
increaseswith m. This observationholds at both small
and largevaluesof c.

• In Table 7, we summarize the effectof variationsin num-
ber of copies. In Tables I-6,we assumed that each data

item has exactly the same number of copies. This is more
relevant to Model [. Thus we only consider tl,is model in
determining the effect of copy variations on evaluation of Rl
and R2. As shown in this table, the effect is significant. As
the variation in number of copies is increased, the number
of successful transactions prior to merge decreases. Hence,
the number of conflicts are also reduced. This results in

a reductmn of RI and R2. AS long as the variations are
not very significant, the differences are also not significant.

6. CONCLUSIONS

In this paper, we have introduced the problem of estimating
the number of rollbacks in a partitioned distributed database sys-
tem. We have also introduced the concept of transaction commu-
tativity and described its effect on transaction rollbacks. For this
purpose, the data distribution, replication, and transaction char-
acterization aspects of distributed database systems have been
modeled with three parameters. We have investigated the effect
of six distinct models on the evaluation of the chosen metric.

These investigations have resulted in some very interesting ob-
servations. This study involved developing analytical equations
for the average, and evaluating them for a range of parameters.
We also used sim,lation for one of thcse models. Due to lack
of space, we could not present all the obtained results in this
paper. In this section, we will summarize our conclusions from
these investigations.

We now summarize these conclusions.

• Random data models that assume only average information
about the system result in very conservative estimates of
system throughput. One has to be very cautious in inter-
preting these results.

• Adding more system information does not necessarily lead
to better approximations. In this paper, the system infor-
mation is increased from model 6 to model 2. Even though
this increases the computational complexity, it does not
result in any significant improvement in the estimation of
number of rollbacks.

• Model 1 represents a specific system. Here, we define the
transactions completely. Thus it is closer to a real-life sit-
uation. Results (analytical or simulation) obtained from
this model represent actual behavior of the specified sys-
tem. However, results obtained from such a model are too
specific, and can't be extended for other systems.

• Transaction commutativity appears to significantly reduce
transaction rollbacks in a partitioned distributed database
system. This fact is only evident from the analysis of model
1. On the other band, when we look at models 2-6, it is
possible to co,clude that commutativity is not helpful un-
less it is very very high. Thus, conclusions from model 1
and models 2-6 appear to be contradictory. Since mod-
els 3-6 assume average transactions that can randomly se-
lect any data item to read (or write), the evaluations from
these models are likely to predict higher conflicts and hence
more rollbacks. The benefits d,,e to comvmtativity seem to
disappear in the average behavior. Model 1, on the other

hand, describes a specific system, and hence can accurately
compute the rollbacks. It is also able to predict the benefits
due to commutativity more accurately.

• The distribution of number of copies seems to affect the

evaluations significantly. Thus, accurate modeling of this
distribution is vital to evaluation of rollbacks.

In addition to developing several system models and evalua-
tion techniques for these models, this paper has one significant
contribution to the modeling, simulation, and performance anal-
ysis community.

If an abstract system model with average information is
employed to evaluate the effectiveness of a new technique
or a new concept, then we should only expect conservative
estimates of the effects. In other words, if the results from
the average models are positive, then accept the results.
If these are negative, then repeat the analysis with a less
abstracted model. Concepts/techniques that are not ap-
propriate for an average system may still be applicable for
some specific systems.

843

R. Mukkamala

Table 1. Effect of Number of Partitions on RolIbacks

Model

#
Sim.

1

2

3
4

5

6

p, = 4,p_ =6, c=3

Ih.folc Ill ll_ After

M,',g,' M,',g,'

._,t)2O() [0(1(I '2(15 ,18995

50290 10Ut) 199 49001
48315 3597 10322 34397
48315 3464 10194 34657

48618 3667 10243 34708

47276 2679 10238 34360
46593 3852 8570 34171

Pl = 4,1h = pa = 3, c=3
lie[ore R, ll; A_er

M,.,'g,' Merge

211450 0 0 314'50

31450 0 0 31450
27069 3460 8945 14664

27069 2798 9410 14861
27657 3255 9444 14958

24207 1507 9106 13594

22356 2937 6673 12747

Table 2. EffectofNumber of Copieson Rollbacks

Pt = 4, Ps = 6,

Model Before R,

Merge

Sim. 34600 200

1 34600 200

2 31069 1998
3 31069 1601
4 31595 1798

5 23203 1568
6 27138 3413

R3

c=2

After

Merge

15 34385

0 34400

5119 23952
5334 24134

5420 24377

2326 19309

1701 22024

Pl = 4, P2

Before RI

Mer_e
65000 4000

65000 4000

65000 8000

65000 8000

65000 8000
65000 80UO

65000 8000

----6, c=8
R_ After

Merge
I

4970 56030
4981 56019

17777 39223

17786 '39214

17786 39214

17875 39125

17860 39140

Table 3. Effect of Number of Nodes on Rollbacks

Model

#
Sire.

1
2
3

4

5
6

Pl = 10, pa = 10, c = 5
Before Ill Its After

Merg e Merge
G1250 4000 "6240 51010

61250 4000 6231 51019
61024 9090 21183 30751

61024 8992 21286 30746

61100 9031 21326 30743

60968 906,1 21292 30613
60876 9363 20936 30577

Pl = 10,p_ = 10, c = 12

Before R, R2 Aher

Mer_e Merg e
65000 5000 6231 53769
65000 5000 6231 53769

65000 10000 22277 32723

65000 I0000 22286 32714

65000 10000 22286 32714

65000 10000 22375 32625

65000 I0000 22360 32640

Garcia-Molina, H. (1983),"Using semantic knowledge for trans-
ACKNOWLEDGEMENT action processing in a distributed system," ACM Trans. on

This research was sponsored in part by the NASA Langley Database Stjstems 8, 2, 186-213.

Research Center under contract NAG-I-I154. Jajodia, S. and P. Speckman (1985), "Reduction of conflicts in
partitioned databases," In Proceedings of the 19th Annual

REFERENCES Conference on Information Sciences and Systems,349-355.

Coffman, g. G., E. Gelenbe, and B. Plateau (1981), _Optimiza- Jajodia, 5. and R. Muk'kAmala (1990), Measurin 9 the Effect of
tion of Number of Copies in a l)istributed Database, _ IEEE Commutative Transactions On Distributed Databnsc Per-
Transactions on Soflwa:_ Eug,neerin9 7, 1, 78-84.

D._iA_.,. c n 11982_ _An ontimistic protocol for paxtltioned
distributed database systems, Ph.D. thes_s, Departme
of EECS, Princeton University.

D,_;a,n, S B ¢1984_ "Ontimism and consistency in partitioned
..... &stnbutc'_'"'"" ' databaseJ' rsystems.,. ACM Transactions on data_

sl/stems 9, 3, 456-481.

Davidson, S.B., H. G&rcia-Molina, and D. Skecn (1985), "Consis-
tency in partitioned networks, A CA[Computing Sur_eys

17,3,341-370.

Davidson, S.B. (1986), "Analyzing partition failure protocols,"
Technical Report MS-CIS-86-05, Department of Computer
and info. Sci., Univ. of Pennsylvania.

formance, To appear in Computer Journal.

Mukkamala, R. (1987), "Design of Partially Replicated Distributed
Database Systems," Technical Report 87-04, Department
of Computer Science, University of Iowa_

Mukkamala, R. (1990), "Measuring the Effects of distributed
database models oa transaction rollback measures," Tech-
nical Report 90-38, Department of Computer Science, Old
Dominion University.

Wright, D. D. (1983a), ,_Managing distributed datal)ases in par-
titioned networks, Ph.D. thesis, Department of Computer
Science, Cornell University, (also TR 83-572).

Wright, D. D. (1983b), "On merging partitioned databases," ACM
SIGMOD Record 13,4,6-14.

844

Effects of Disu'ibuted Database Modeling on Evaluation of Transaction Ro]lbacks

Table 4. Effect of m on Rollbacks (Models 5 and 6: Pl = 4,p2 = 6, c = 3

m

0.00

0.50

0.80

0.90

0.95

0.99

1.00

Merge

47276 2679 10238 34360

47276 2679 10238 34360

47276 2679 10238 34360

47276 2679 [0238 34360

47276 2678 10239 34360

47276 2208 10665 34403

46726 0 0 46726

Model 5 Model 6

R, Rr Aher lit Rr After

Merge Merge Merge

46593 3852 8570 34171

46593 3852 8570 34171

46593 3852 8570 34171

46593 3848 8574 34171

46593 3774 8774 34175

46593 2182 10109 34301

46593 0 0 46593

Table 5. Effect of,n on Rollbacks (Model 2: p, = 4,pr = 6)

c----3 c=8

m Before RI R2 After Before Rt R2 After

Merge Merge Merge Merge

0,0

0.27

0.40

0.77

0.95

0.99

1,0

48315 3597 10322 34397

48315 3597 10322 34397

48315 3597 10322 34397

48315 3597 10:122 3,1397

48315 3205 10708 34402

48315 986 L2882 3,t447

48315 0 0 48315

65000 8000 17973 39027

65000 8000 17973 39027

65000 8000 17973 39027

65000 8000 17973 39027

65000 7660 18312 39028

65000 4321 21642 39037

65000 0 0 65000

m

0.0

0.27

0.40

0.77

1.0

Table 6. Effect. of ,,, o,i Rollbacks (Model 1: p, = 4,p2 = 6)

c=3

Before R, /?r A tier

Merge Merge

50200 4000 1199 45001

50200 1000 109 49001

50200 800 199 49201

50200 0 0 50200

50200 0 0 50200

c=8

Before R! R2 After

Merge Merge

65000 8000 6379 50621

65000 4000 4981 56019

65000 1800 2793 60407

65000 0 0 65000

65000 0 0 65000

Table 7. Effect of Variatio,s i,D # of C!opies o,,Rollbacks

(Model 1: Pt = 4,pr = 6, w/c : m = 0.27, wo/e: m = 0.0)

p| = 4,p._ = 6,_.-- 3

Copy II 13eforeRtRrAfterDistribution Merge Merge

d3 = 500 II w/c 50200 1000 199 49001

II wo/c 50200 4000 1199 45001
d2 -- d4 = 100, d3 = 300 w/c 48300 1000 997 46303

wo/c 48300 4200 1793 42307

dr = d3 = 167, d4 = 166 [[w/c 41400 200 0 41200

;Iwo/c 41400 2000 597 38803

dl = dr = da = d.t = ds = 100 w/c 40400 200 0 40200

wo/c 40400 1600 797 38003

d, = ds = 250 w/c 28700 0 0 28700

wo/c 28700 1200 199 27301

845

/* This program creates a menu and facilitates updates, inserts and

deletes of records in a database. EMPP is an employee database and

the program assumes it to be already created with the following
fields:

EMPNO (employee number) of type numeric

ENAME (employee name) of type character

SAL (salary) of type numeric with provision for 2 places after
decimal

DEPTNO (department number) of type numeric

JOB (job name) of type character

*/

#include <stdio.h>

#include <ctype.h>

EXEC SQL BEGIN DECLARE SECTION;

VARCHAR uid[80]; /* variable for user id */

VARCHAR pwd[20]; /* variable for password */

int empno; /* host variable for primary key - employee number */

VARCHAR ename[15]; /* host variable for employee name */

int deptno; /* department number */

VARCHAR job[15]; /* host variable for job */

int sal; /* host variable for salary */

int 1 = 0; /* host variable to hold the length of the srting - a

value returned by the asks() function. */

int count; /* a variable to obtain number of records in the

database with the same primary key value */

int reply = 0; /* variable to obtain the whether a new value exists

*/

int choice = 0; /* variable defined to obtain value for the menu */

int code; /* variable to print to the ascii file to indicate wether

the record was updated (value=l), inserted (value=2) and deleted

(value=3) */

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

FILE *fp;

main()

{
/* open ascii file in append mode */

fp = fopen("outfile", "a") ;
/* give the login and password to logon to the database */

strcpy (uid. art, "rsp") ;

uid.len = strlen(uid.arr) ;

strcpy (pwd. arr, "prs") ;

pwd. len = strlen(pwd, arr) ;

/* exit in case of an unauthorized accessor to the database */

EXEC SQL WHENEVER SQLERROR GOTO errexit;

EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;

for (;;)

{ /* infinite loop begins */

/* menu for selecting update, insert, and delete options */

printf("\n \n i. Update a record \n");

printf("\n \n 2. Insert a record \n");

printf("\n \n 3. Delete a record \n");

printf("\n \n Select an option 1/2/3 ? \n");

choice = getche();

if (choice == 'i') goto update;

else if (choice == '2") goto insert;

else if (choice =='3') goto delete;

else { printf("invalid selection");

exit(l);}

update: /* label for the update option */

{
/* To ensure that the employee with the given employee number

exists, before update could be made. */

code = I;

printf(" \n count is %d \n", count);

askn("Enter employee number to be updated: ", &empno);

/* using the COUNT supported by oracle, the number of records

having the desired employee number is assigned the variable count

*/

EXEC SQL SELECT COUNT(EMPNO) INTO :count

FROM EMPP

WHERE EMPNO = :empno;

printf("count is %d \n", count);

if (count == 0)

{ printf("Employee with employee number %d does not exist \n",

empno);

exit(l); }

/* retrieve the information from the database whose employee-number

has been requested for, and place the contents of the fields into

C variables for update purposes. */

EXEC SQL SELECT ENAME, SAL, DEPTNO, JOB

INTO :ename, :sal, :deptno, :job
FROMEMPP
WHEREEMPNO= :empno;

/* displays the already existing value for employee name */

/* assign the new employee name if it should be updated */

printf("ename is %s \n", ename.arr);

printf("Do you want to update ENAME: (y/n)?");

reply = getche() ;

if (reply == 'n') {

ename = ename;

printf("\n ename is %s \n", ename.arr) ;}

• if (reply == 'y') {

1 = asks("\n enter employee name : ", ename.arr);

printf("new ename is %s \n", ename.arr) ;}

/* displays the already existing value for job name */

/* assign the new job if it should be updated */

printf("do you want to update job-name:(y/n)?");

reply = getche();

if (reply == 'n'){

job = job;

printf("\n job-name is %s \n", job.arr);}

if (reply == 'y'){

job.len = asks("\n enter employee's job :", job.arr);

printf("new job-name is %s \n", job.art) ;}

/* displays the already existing value for salary */

/* assign new salary if it should be updated */

printf("Do you want to update salary:(y/n)");

reply = getche();

if (reply == 'n'){

sal = sal;

printf("\n salary is %d \n", sal);}

if (reply == 'y'){

askn("\n enter employee's salary: ",

printf("new salary is %d \n", sal);}

&sal) ;

/* displays the already existing value for department number */

/* assign the new department number if it should be updated */

printf("Do you want to update deptno :(y/n)");

reply = getche() ;

if (reply == 'n'){

deptno = deptno;

printf("\n deptno is %d \n", deptno);}

if (reply == 'y'){

askn("\n Enter employee dept : ",&deptno) ;

printf("new deptno is %d \n", deptno) ; }

/* update the database with the new values */

EXEC SQL UPDATE EMPP

SET ENAME = :ename, SAL = :sal, DEPTNO = :deptno, JOB = :job

WHERE EMPNO = :empno;

printf("\n %s with employee number %d has been updated\n",

ename, arr, empno) ;

fprintf(fp,"%10d %Id %15s", empno, code, ename.arr);

fprintf(fp,"%6d %3d %4s\n", sal, deptno, job.arr);

printf("%10d %15s %6d", empno, ename.arr, sal);

printf("%3d %4s\n", deptno, job.arr);

}

insert: /* label for insertion of record based on the employee

number */

{
code = 2 ;

/* To prevent insertion of a record whose primary key is the same

as the primary key of an already existing record */

askn("\n Enter employee number to be inserted:", &empno);

EXEC SQL SELECT COUNT(EMPNO) INTO :count
FROM EMPP

WHERE EMPNO = :empno;

printf ("count is %d \n", count) ;

if (count > 0){

printf ("Employee with %d employee number already exists \n",

empno) ;

exit(l) ; }

else { /* obtain values for various fields to be inserted */

1 = asks ("Enter employee name : ", ename.arr) ;

job. len = asks ("Enter employee job :", job.arr) ;

askn("Enter employee salary :", &sal) ;

askn("Enter employee dept number :", deptno);

/* insert the values obtained into the database */

EXEC SQL INSERT INTO EMPP (EMPNO, ENAME, JOB, SAL, DEPTNO)

VALUES (:empno, :ename, :job, :sal, :deptno) ;

/* append the insert into the ascii file */

fprintf(fp,"%10d %Id %15s ", empno, code, ename.arr) ;

fprintf(fp,"%6d %3d %4s \n", sal, deptno, job.arr) ;

printf("%10d %15s %6d", empno, ename.arr, sal);
printf("%3d %4s", deptno,job.arr) ; }

delete:
*/

/* label for deletion of records based on employee number

{
int code = 3;

/* obtain the employee number of the employee to be deleted */

askn("Enter employee number to be deleted :", &empno);

EXEC SQL SELECT COUNT(EMPNO) INTO :count

FROM EMPP

WHERE EMPNO = :empno;

if (count > 0){ /* delete record if it exists */

EXEC SQL DELETE FROM EMPP WHERE EMPNO = :empno;

printf("Employee number %d deleted \n",empno);

fprintf(fp, "%10d %id\n", empno, code);}

else {

printf("Employee with number %d does not exist \n", empno);

exit(l) ;}

}

EXEC SQL COMMIT WORK RELEASE; /* make the changes permanent */

printf ("\n End of the C/ORACLE example program.\n");

return;

fclose(fp);

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL ROLLBACK WORK RELEASE; /* in case of inconsistency */

return;

errexit:

errrpt();

}
} /* infinite loop ends */

/* function takes the text to be printed and accepts a srting

variable from standard input and converts it into numeric - hence

is used to obtain values for numeric fields */

int askn(text,variable)

char text[];

int *variable;

{
char s[20];

printf(text);

fflush(stdout);
if (gets(s) == (char *)0)

return(EOF);

*variable = atoi(s);
return(l);
}

/* function takes the text to be printed and prints it, accepts
string values for character variables and is thus used to obtain

values for fields of type character. It returns the length of the

string value */

int asks(text,variable)

char text[],variable[];

{
printf(text);

fflush(stdout);

return (gets(variable)

strlen(variable));

}

== (char *) 0 _ EOF :

errrpt ()

{
printf ("%. 70s

-sqlca. sqlcode) ;

return(0) ;

}

(%d) \n" , sqlca, sqlerrm, sqlerrmc,

